Ranking Mahalanobis Distance Models for Predictions of Occupancy From Presence-Only Data
نویسندگان
چکیده
منابع مشابه
Distance-based tree models for ranking data
Ranking data has applications in different fields of studies, like marketing, psychology and politics. Over the years, many models for ranking data have been developed. Among them, distance-based rankingmodels, which originate from the classical rank correlations, postulate that the probability of observing a ranking of items depends on the distance between the observed ranking and a modal rank...
متن کاملA generalized Mahalanobis distance for mixed data
A distance for mixed nominal, ordinal and continuous data is developed by applying the Kullback–Leibler divergence to the general mixed-data model, an extension of the general location model that allows for ordinal variables to be incorporated in the model. The distance obtained can be considered as a generalization of the Mahalanobis distance to data with a mixture of nominal, ordinal and cont...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولFinite-Sample Equivalence in Statistical Models for Presence-Only Data.
Statistical modeling of presence-only data has attracted much recent attention in the ecological literature, leading to a proliferation of methods, including the inhomogeneous Poisson process (IPP) model, maximum entropy (Maxent) modeling of species distributions and logistic regression models. Several recent articles have shown the close relationships between these methods. We explain why the ...
متن کاملEfficient Learning of Mahalanobis Metrics for Ranking
We develop an efficient algorithm to learn a Mahalanobis distance metric by directly optimizing a ranking loss. Our approach focuses on optimizing the top of the induced rankings, which is desirable in tasks such as visualization and nearestneighbor retrieval. We further develop and justify a simple technique to reduce training time significantly with minimal impact on performance. Our proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Wildlife Management
سال: 2010
ISSN: 0022-541X,1937-2817
DOI: 10.2193/2009-002